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Induced Roll Computations for Conventional Missiles

F. J. Priolo* and A. B. Wardlaw Jr.T
Naval Surface Warfare Center, White Oak, Silver Spring, Maryland 20903

The ZEUS program, which solves Euler’s equations by spatial marching, is applied to conventional missiles
characterized by circular cross-sectional bodies, canard control surfaces, and a cruciform tail. ZEUS incorpo-
rates a multiple-zone gridding technique and a second-order extension of Godunov’s method. The Godunov
method is an upwind scheme based on the Riemann problem for steady supersonic flow and cast in a control
volume form. Second-order accuracy is obtained by computing local slopes and adding a predictor step. The
scheme fits the bow shock and captures imbedded shocks. The ZEUS code is applied to two canard-controlled
missiles with cruciform tails to predict longitudinal and lateral-directional (e.g., induced rolling moment)

aerodynamic characteristics.

Nomenclature

Ak = area of control volume edge lying in the z = z*
plane ;

G = rolling moment coefficient, rolling moment/q.Sd

Cu = pitching moment coefficient, pitching moment/
goSL

Cn = normal force coefficient, normal force/q.S

Cy = side force coefficient, side force/q.S

d = diameter

F = flux vector, Eq. (1)

H, = stagnation enthalpy .

L = reference length, length of configuration

M, = freestream Mach number

n = vector normal to cell edge, Eq. (1), = (n,ny,n;)

In| = cell edge area

p = pressure

G = freestream dynamic pressure

R, = upper and lower supersonic streams for the
Riemann problem, Fig. 3

S = reference area, maximum cross-sectional area of
the body

U = flux vector, Eq. (1)

(u,v,w) = Cartesian velocity components

(x,y,z) = Cartesian coordinates with z along the missile axis

o = angle of attack, deg

o = canard deflection angle, positive with leading edge
up, Figs. 7, 8, 11-13

8 = flow direction angle, Fig. 3

¥ = ratio of specific heats

K’ = difference limiter, Eq. (3)

¢ = crossflow plane roll angle measured clockwise from
the positive x axis

P = density

Subscripts

n,m,k = cell center, Fig. 4

o = ambient conditions

1,2,3,4 = canard panel numbers as defined in Figs. 6
and 10 (Figs. 8, 11-13)
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I. Introduction

RADITIONALLY, missile aerodynamics has been pre-

dicted using slender body theory, linear theory, and semi-
empirical methods that are based on an extensive data base.
These methods determine the global acrodynamic characteris-
tics using a minimum of computational resources. Numerical
methods, on the other hand, are independent of experimental
data but require a greater computational effort. Such tech-
niques are applicable to a wider range of configurations and
flight parameters and provide detailed flowfield properties not
attainable using empirical methods. A number of numerical
procedures have been applied to missiles, including linearized
potential, panel, nonlinear full potential, space marching Eu-
ler, time marching Euler, parabolized Navier-Stokes, thin-
layer Navier-Stokes, and Reynolds-averaged Navier-Stokes. A
survey of these methods is provided by Hoeijmakers.!

The present paper focuses on applying the Euler equations
to missiles in supersonic flight. Under these conditions, the
Euler equations are hyperbolic, and the missile’s flowfield can
be determined from known flow conditions at a cross-sec-
tional plane near the nose tip. This initial data plane, which is
generated by a sharp cone or blunt body starting program, is
marched down the length of the missile to the base, as shown
in Fig. 1. Computational times for a complete missile are
similar to those for linear potential methods given by Ref. 1
(approximately 1-5 min of Cray time). However, the Euler
equations can treat shocks of arbitrary strength and convect
vorticity, whereas potential methods cannot. Vorticity gener-
ated by separation is not described by the Euler equations, and
phenomena such as body vortices must be empirically mod-
eled.

Space marching Euler methods were originally applied to
re-entry vehicles that featured conical geometries complicated
by cuts and flaps. Mesh generation was accomplished using a
single transformation,? a technique that is not well suited to
tactical missiles that are characterized by thin, low-aspect-
ratio fins with sharp edges.
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Fig. 1 Cartesian and cylindrical coordinate system.
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Solutions for tactical missiles have been accomplished using
a multiple zone gridding strategy. Initial work by Wardlaw et
al.51¢ applied the MacCormack scheme with characteristic
boundary conditions. These characteristic boundary condi-
tions were enforced at wing edges and surface discontinuities
in conjunction with special procedures that applied oblique
shocks and expansions where appropriate. These methods
have been successfully applied to missiles but are not robust.
For complex shapes, artificial viscosity and special procedures
were adjusted on a trial and error basis. Additionally, Ward-
law et al.!! combined the same multiple zone approach with
Godunov’s first-order method'? for steady supersonic flow.
Unlike the MacCormack approach, this technique was robust
and devoid of any special procedures.

The Zonal Euler Solver (ZEUS) of Wardlaw et al.!3-16 js a
space marching method that combines a simple multiple-zone
gridding technique and a second-order extension of Godunov’s
method. The Godunov method is an upwind scheme based on
the Riemann problem for steady supersonic flow. It is cast in
control volume form and consists of a predictor and corrector
step. The predictor step advances the primitive variables using
Euler’s equations in nonconservation form. Derivatives are
computed using a limited central differencing procedure. The
corrector step modifies Godunov’s method by assuming linear
property variations within each control volume. This program
is devoid of explicit artificial viscosity and is robust. However,
as in all space marching Euler solutions, the flow must remain
supersonic in the axial direction. This effectively limits these
solutions to the range in incidence and Mach number shown in
Fig. 2.

The prediction of the lateral-directional aerodynamic char-
acteristics of a missile is a very difficult test for any prediction
method. As discussed by Lesieutre et al.,!” tail loading is
strongly influenced by canard trailing vorticity and afterbody
vortices. In particular, for canard-controlled missiles with roll
or yaw controlled canard deflections, an induced roll develops
as a result of an asymmetric flowfield near the tail.

The current paper applies the ZEUS program to conven-
tional missiles with circular bodies, canard control surfaces,
and a cruciform tail.!%!® Predictions are made of both the
longitudinal and lateral-directional aerodynamic characteris-
tics, and results are compared with experiment. A brief de-
scription of the ZEUS computational algorithm is provided in
Sec. II. Section IIT discusses results, and Sec. IV outlines
conclusions to be drawn from this study.

II. Computational Procedure
A. Zone Structure

The ZEUS program uses a multiple zone structure that
provides a convenient framework from which to compute
shapes having sharp edged fins. The crossflow plane is divided
into several quadrilateral zones, and a simple separate trans-
formation is applied to each. Zone boundaries are taken to
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Fig.2 Range of a vs M. limiting the space marching Euler computa-
tional domain. As shown, variations of these limitations can occur,
depending on‘the configuration.
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coincide with the body, canard and tail surfaces, and with the
bow shock, allowing fin thickness and fin deflections to be
accurately modeled.

B. Numerical Scheme

For steady supersonic flow, the Riemann problem repre-
sents the confluence of two two-dimensional supersonic
streams, as illustrated in Fig. 3. At the point of intersection,
shocks or expansion fans form that turn both streams to a
common direction. The two final streams need not feature the
same density or velocity and a slip line generally forms be-
tween them. The solution begins by guessing the slip line
orientation and computing the pressure on each side. Since the
shock and expansion relations are nonlinéar, an iterative pro-
cedure is adopted that adjusts the slip line orientation until the
appropriate direction is found. This direction is the one pro-
ducing the same pressure in both streams. If the two streams
forming the Riemann problem have similar properties, a
closed form linear solution can be obtained. Alternatively, an
approximate Riemann problem? can be constructed that has a
closed form solution.

Using the notation of Fig. 4, mass and momentum conser-
vation through a control volume can be expressed as

k+1 _ yrk
Un,m - Un,m

"Fn+1/z,m +Fn—‘/z,m

—Fn,m+‘/z +Fn,m—‘/2 (la)

S: SHOCK
STATE

Ritpi,pt, use, wy

E: EXPANSION
STATE

F: EXPANSION
FAN .

Fig.3 Supersonic Riemann problem consists of two intersecting su-
personic streams, R, and R_,
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Fig.4 Control volume nomenclature.




488 _F. J. PRIOLO AND A. B. WARDLAW JR:

where
oW oV
U w w2t p F ' owV + np
nm — “Inm pWu s n+ Yaum = puV + np
pwy nm pVV + nyp n+Y%,m
V nn+‘/zm (u)v W)n+‘/zm ) (lb)

Here U is the flux in the z direction that passes through the
shaded cell ends, whereas the F's are the fluxes associated
with the remaining cell edges. Equations (1) are closed using
the constant total enthalpy condition and the perfect-gas equa-
tion of state that yield the constraint

(®/p)r/Cy = D] + 1442 +v2 + wd) = Hy ®

The ZEUS code integrates Euler’s equations using a second-
order Godunov method. Godunov’s original method!? (ap-
plied in Ref. 11) is first-order accurate and usually cast in a
control volume form. Properties within each cell are assumed
constant, and fluxes [F appearing in Eq. (1)] at cell edges are
calculated usifig the Riemann problem. The two sets of pro-
perties adjacent to each celi-edge define the two: Streams
making up the Riémann problem Fluxes crossing a.cell edge
are computed from the solution to the Riemann problem.
Along any ray originating from the point of the initial stream
intersection, properties are constant. The properties along the
ray parallel to the cell edge are used to compute the flux.
When this direction falls between the shocks/expansions

' defmmg the Riemann problerii (see Fig. 3), the computed flux
is influenced by properties at both adjacent cell edges. In other
circumstances, when the flow normal to the cell edge is super-
sonic, the cell edge flux will be a function of only one cell’s
properties: The active cell is upstream or upwind of the cell
edge; thus reﬂectmg the correct domain of dependence of the
problem.

Godunov’s method is extended to second-order accuracy by
addmg a predictor step to determine properties at z* + Az/2
and linearly extrapolating these properties to the cell edge. The
property slopes for both the predictor step and the linear
extrapolation are computed using limited differences that pre-
vent oscillations near shocks. These differences are calculated
in the following manner:

g_{o if ¢,<0 3
3t ey if =0
Wheré
c1=Un+tm —Jum)Som —Su—1m) @
. I(.fn+l,rn _fh—l,m)l
Lo Sign(fn+ 1,m _fn,m) . 2 p
= Af fin K s 1m —=Jim! )
K’ ]fn,r'n —fn— 1,m |

Here, f'is some dependent variable differentiated with respect
to some independent variable £ and 1= «’ <2. :

The predlctor step advances primitive variables using Eu-
ler’s equations in nonconservation form. Near shocks and
other discontinuities, the limiter reduces all slopes to zero and
the scheme collapses to the first-order Godunov’s method.

C. Boundary Conditions

ZEUS is based o1 a finite-volume formulat1on Therefore,
grid points do not lie on the boundary, but rather the cells
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adJacent to the wall have an edge lying along theé boundary
Properties. along cell edges adjacent to the wall are computed
by extrapolating predicted properties to the wall using the cell
slope normal to the wall. These edge properties do not satisfy
the tangent flow boundary conditions and must be turned,
using either an oblique shock or Prandtl-Meyer expansion to
satisfy the wall boundary conditions. The flow. i$ tangent to
the wall, and only the post-turn pressure influences the flux at
the edge lying on the wall:

L1ft1ng surfaces may form and d1sappear as the solution is

marched down the length of the missile. Cell edges that are
partially. covered by a surface are divided info two elements,
one containing the edge area adjacent to the surface and the
other containing the edge area adjoining another cell. Separate
estimates of the fluxes acting on each element are added to
determme the total edge flux.

" The outer zone boundary is determined by tracking the
domain of dependence of the numerical solution, using infot-
mation contained in the Riemann problem.

D. Speclal Procedures

Artificial viscosity and other special procedures .are not
required by the ZEUS code.. However, free parameters do
occur in the difference limiters. In the program, «’ of Eq. {5)
is set to O at cells next to fin surfaces, 1 at interior cells, and 2
at boundary cells in smooth flow regions. These values of «’
do not require ad]ustment from one problem to the next.

o III. Results and Discussion
A. Computed Results :

The ZEUS code has been applied to two conventional mis-
siles with circular cross-sectional bodies, canard control sur-
faces, and a cruciform tail. Comparisons are made with the
measured acrodynamic performance of each missile. Compu-
tations for the. ZEUS code were performed on the SUN3 work
station. Results weré¢ achieved using a marching step size of
90%.of the CFL limit. A uniform mesh size of 72 X 144 G.e.,
72 points in the radial direction) was used for the complete
360-deg configuration. Computations featuring canards of tail
fins were run using multiple Zones. The approximate Riemann
solver of Ref. 20 was émployed for all of the computations.

Computations were performed on the canard-body-tail con-
figuration shown in Fig. 5 and found in Ref. 18. This missile
is characterized by a 2.25 caliber tangent ogive nose, a 7.6
caliber forebody; cruciform canards, a 5.6 caliber afterbody,
and a cruciform tail in line with the canards. The roll orienta-
tion of the inissile was ¢ = 45 deg. Solutions were computed
for an incidence range of 0-18 deg for Mach 2.35 and 0-30 deg
for Mach 4.6. Above these angles of attack, the flow became
subsonic in the ax1al direction near the fin leading edge, and
the space marching procedure could not be continued.

Calculated and measured longitudinal loads as a function of
angle of attack are illustrated in Fig. 6 for the configuration of
Fig. 5 without canard deflection. ZEUS predictions agree
reasonably well with experimental results.. Nonlinearities in
the Cy vs a curves are due to the influence of body and canard
vortices. - These vortices pass close to the tail at intermediate
incidences (i.e.; 10 deg < o < 20 deg). This reduces tail effec-
tiveness and leads to a flattening of the Cys vs o curve.

Figure 7 shows the lateral-directional load comparisons for
the same shape with canards 2 and 4 deflected asymmetrically
10 deg. The computed lateral-directional loads, which com-
pare favorably with measured data, result from the asymmet-
ric cufved crossflow shocks and ensuing vortices generated- by
the canards which are deflected in opposite directions. At high
incidences, asymmetric crossflow shocks also appear on the
afterbody adding asymmetries into the flowfield that is con-
vected downstream. Experimentally, the missile features vor-
tices shed from the canards and afterbody, the latter as a
consequence of boundary-layer separation.
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Fig. 5 Canard-body-tail configuration.!8
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Fig.6 Computed and measured Cy vs o and Cs vs « for the config-
uration of Fig. 6 wnthout canard deflection for ¢ =45 deg at
Mo = 2.35 and 4.6.

- Computed pressures and axial vorticity contours at the ca-
nard trailing edge are displayed in Fig. 8 for Mach 4.6 at
25-deg incidence, with canards 2 and 4 deflected asymmetri-
cally 10 deg. Visible are the asymmetric shock structures and
vortices. This flowfield is convected over the tail affecting the
rolling moment, as shown in Fig. 7. Also shown is the interac-
tion of the bow shock with the windward fins.

Computations were also performed on the canard-body-tail
configuration of Ref. 19, which is illustrated in Fig. 9. This
missile is characterized by a 2.25 caliber tangent ogive nose on
a 3.7 caliber forebody, cruciform canards, a 12.7 caliber after-

body, and a cruciform ta11 in line with the canards. Solutlonsr

were calculated for an incidence range of 0-20 deg, a Mach
number of 2.5, and missile roll orientations of ¢'=0, 26.6,
and 45 deg. The flow became subsonic in the marchmg direc-
tion at higher angles and attack, and the space marchmg
procedure could not be contimied.

Calculated and measured normal force and pltchmg mo-
ment as a function of angle of attack are displayed in Fig. 10
for the configuration of Fig. 9. Results are shown in Fig. 10 at
¢ = 0 deg with and without -canard deflection and at ¢ =45
deg without canard deflection. Computations were performed
for incidences up to 18 deg, the extent of the experimental
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Fig. 7 Computed and measured C;vs « and Cy vs « for the configu-
ration of Fig. 6 with canards 2 and 4 deflected asymmetrically 10 deg
for ¢ = 45 deg at M. = 2.35 and 4.6.

data. Predicted and measured longitudinal loads are in good
agreement. '

The rolling moment and side force comparisons, for the
same configuration, are illustrated in Figs. 11 and 12 for the
three roll orientations, with canards 2 and 4 asymmetrically
deflected 5 deg. Here, computations overpredict the experi-
mental results; however, trends are predicted reasonably well.
The computed lateral-directional loads result from the asym-
metric shock structures and vortices, created by asymmetrlcally
deflected canards. In addition, at high incidences, asymmetric
crossflow shocks develop on the long afterbody between the
canards and the tail, which produce body vortices that havea
strong influence on the tail. Experimentally, asymmetric vor-
tices are generated by the canards and shed from the afterbody
as a consequence of boundary—layer séparation.

- Figure 13 illustrates computed pressure and axial vorticity
contours at an axial station behind the canards (z ='11) and in
front of the tail (z = 30) of Fig. 9. Solutions are shown for a
missile orientation of 0 deg and angles of attack of 0, 10, and
18 deg. At 0-deg incidence, the asymmetric canard deflection
induces ciréulation around the body which interacts with the
tail. At 10-deg incidence, ‘the vorticity created by the shocks on
the canards moves away from the tail. "At higher angles of
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VORTICITY CONTOURS

PRESSURE CONTOURS

Fig. 8 Computed crossflow isobars and isovorticity contours for the configuration of Fig. 6 (looking downstream) with canards 2 and 4 deflected
asymmetrically 10 deg for ¢ = 45 deg at M = 4.6, a = 25 deg, and 7 = 29.
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Fig. 9 Canard-body-tail configuration.1?
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Fig. 10 Computed and measured Cy vs « and Cps vs « for the
configuration of Fig. 10 at M. = 2.5 for ¢ = 0 and 45 deg without
canard deflection and for ¢ =0 deg with the horizontal canards
deflected + 5 deg.

2

Fig. 11 Computed and measured C; vs o and Cy vs « for the con-
figuration of Fig. 10 with canards 2 and 4 deflected asymmetrically
S deg at M., = 2.5 for ¢ = 0 deg.
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Flg 12 Computed and measured C; vs « and Cy vs « for the con-
figuration of Fig. 10 with canards 2 and 4 deflected asymmetrically
5 deg at Mo, = 2.5 for ¢ = 26.6 and 45 deg.

attack, crossflow shocks form on the leeside of the body, as
illustrated for 18 deg incidence, which add vorticity into the
flowfield in the vicinity of the tail, increasing the induced roll.

B. Discussion

The Euler equations can treat shocks of arbitrary strength
and convect vorticity. The circulation produced by an Euler
calculation on a missile is created by the bow shock, the fin
leading edge shocks, and the crossflow shocks on the fin and
the body. These calculations feature the appropriate fin vor-
tices but generate body vortices through crossflow shocks.
Experimentally observed body vortices, on the other hand, are
a result of boundary-layer separation. Accounting for viscous
phenomena, such as body vortices, is outside the scope of the
Euler equations and must be accomplished through semiem-
pirical modeling.

The tactical missile flowfield contains vortices that exert a
significant and nonlinear influence on missile aerodynamics.
Vortices are generated by forward lifting surfaces and body
boundary-layer separation. Effective treatment of missiles re-
quires the ability to predict the locations and strengths of the
flowfield vortices.

Changes in incidence alter the vortex trajectories, as well as
the number of vortices present, as is illustrated in Fig. 14 for
a canard-body-tail missile. Three regimes exist for the canard/
body vorticity interaction. At low angles of attack, only vor-
tices from the deflected canards are present, and these impact
the tail. At intermediate angles of attack, the canard vortices
pass over the tail, and body vortices are still absent. At high
incidence, the canard vortices move farther away from the
body and the tail, while body vortices develop and interact
with the tail. If the canards are deflected in opposite direc-
tions, asymmetries develop in the vortex structures that induce
a side force and rolling moment on the tail.

The nonlinear variations in the C; vs « curves of Figs. 7, 11,
and 12 can be explained by considering the influence of such
canard and afterbody vortices on the tail. For example, con-
sider Fig. 11, in which the canards of Fig. 9 (¢ = 0 deg) are
asymmetrically deflected 5 deg. At low incidences, different

deg with the horizontal canards deflected asymmetrically 5 deg.

LOW INCIDENCE

Fig. 14 Vortex structures in a tactical missile flowfield at different
incidences.

rolling moments are obtained for the canard-body and the
canard-body-tail configurations as indicated by the arrow.
This variation can be attributed to the interaction of the
asymmetric canard vortices with the tail. At intermediate inci-
dences (5 deg < a < 12 deg), rolling moment for the canard-
body-tail configuration diminishes to those of the canard-
body shape. This is due to the canard vortices moving away
from the body with increasing angle of attack. Increases in the
rolling moment for the canard-body-tail configuration at
higher incidences (o = 12 deg) occur because of the interaction
of asymmetric afterbody vortices, created computationally by
asymmetric crossflow shocks, with the tail. Similar effects
occur for ¢ = 26.6 and 45 deg, as shown in Fig. 12.

IV. Concluding Remarks

It has been demonstrated that the ZEUS program is capable
of predicting the nonlinear, vortex-induced, aerodynamic
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characteristics of conventional missiles having canard control
surfaces and a cruciform tail at supersonic Mach numbers.
The computed longitudinal aerodynamic characteristics agree
well with measured normal force and pitching moment, and
the predicted lateral-directional aerodynamic characteristics
follow the correct nonlinear trends.

The lack of quantitative agreement between calculated and
measured lateral-directional aerodynamic characteristics can
be traced to the inviscid model. Prediction of these quantities
for a canard-body-tail configuration requires that the canard
and body vortices be taken into account. Inviscid calculations
feature the appropriate canard vortices, but body vortices are
generated by crossflow shocks. By contrast, experimentally
observed body vortices are a result of boundary-layer separa-
tion. The computed lateral loads exhibit the correct nonlinear
trends with incidence. However, to obtain quantitative agree-
ment with experiment, body vortices, generated by the appro-
priate mechanism, must be modeled in the calculation. This
requires appending inviscid methods with an empirical model
of boundary-layer separation.
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